Analysing the use of Real-time Physics Engines for Scientific Simulation: Exploring the Theoretical and Practical Benefits for Discrete Element Modelling
نویسندگان
چکیده
Within Computer Science, reusability of specific modular software components is generally accepted as best practice. Simulation techniques such as Discrete Element Modelling (DEM) rely on the well defined problems of Newtonian physics, and while differences exist in the methods defined to compute solutions to these problems, each method follows the same basic set of premises. Recently, libraries termed Physics Engines (PE) have been released that are designed to solve physics based problems. This paper considers the features of a range PEs and explores whether the techniques and design methodologies can be applicable to the design and implementation of a working simulation. The NVIDIA PhysX engine has been utilised in a practical DEM implementation to simulate the evolution of extensional fault systems in rock. Through understanding the general processing pipeline implemented by a PE, obvious similarities with a range of DEM implementations has became apparent. Discussed are areas that are compatible and also areas within the PE that have been proved unsuited to large scale DEM simulation. It is shown that current versions of PEs may not provide access to techniques giving high enough numerical accuracy for certain applications, but the basic premise of an easy to use and highly optimised library, designed to allow researchers to construct complex simulation scenarios is compelling.
منابع مشابه
MULTI FRACTURE/DELAMINATION ANALYSIS OF COMPOSITES SUBJECTED TO IMPACT LOADINGS
A combined finite/ discrete element method is presented for modelling of composite specimens subjected to dynamic/impact loadings. The main task is set on developing an algorithm for simulation of potential bonding and debonding/delamination phenomena during impact or general dynamic loading conditions. In addition, full fracture analysis can also be performed. The proposed approach adopts a ge...
متن کاملTheoretical Analysis of the Optical Properties of Gold Nanoparticles Using DDA Approximation
This article describes a study, using numerical simulation, of the optical properties of nano particles as a function of their size. Many methods introduced to simulate and calculate the interaction of light and particle, such as Mie analysis, boundary element and finite element methods. The Discrete Dipole Approximation (DDA), wherein a target geometry is modeled as a ...
متن کاملEmergency department resource optimisation for improved performance: a review
Emergency departments (EDs) have been becoming increasingly congested due to the combined impacts of growing demand, access block and increased clinical capability of the EDs. This congestion has known to have adverse impacts on the performance of the healthcare services. Attempts to overcome with this challenge have focussed largely on the demand management and the application of system wide p...
متن کاملBack-calculation of mechanical parameters of shell and balls materials from discrete element method simulations
Discrete Element Method (DEM) is extensively used for mathematical modeling and simulating the behavior of discrete discs and discrete spheres in two and three dimensional space, respectively. Prediction of particles flow regime, power draw and kinetic energy for a laboratory or an industrial mill is possible by DEM simulation. In this article, a new approach was used to assess the main paramet...
متن کاملطراحی مدل عاملمحور و کاربرد آن در باستانشناسی
The aim of this paper is to consider what constitutes agent-based modelling (ABM) and how this can relate to archaeological reasoning. The development and construction of ABM models is an essential prerequisite for most archaeological reasoning. Both directly and indirectly, archaeologists are making extensive use of ideas and methods in applications that derive from archaeological, anthropolog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010